Radiative effects of Arctic sea ice retreat as inferred from CERES

Kristina Pistone & V. Ramanathan Scripps Institution of Oceanography, UCSD

CERES Science Meeting 27 April 2011

Objectives

Understand the albedo effects of sea ice retreat -- how much of an increase in solar absorption results from melting of sea ice?

Determine role of sea ice albedo feedback

Outline

- Overview: historic sea ice retreat
- Linear response of CERES clear-sky albedo to changes in sea ice
- Estimate of longer-term radiative effects and changes with time
- Ice albedo feedback: linear correlation with surface temperature
- Conclusion

Arctic sea ice retreat trends

- Three smallest September sea ice extents occurred in the past four years (2007, 2008, 2010)
- Three smallest amounts of (thicker) multiyear ice on record also in the past four years
- Eight of the ten lowest summer minimums recorded were in the last decade

Figure credit NSIDC sea ice news: http://nsidc.org/arcticseaicenews/2010/100410.html 2010 Arctic Report Card: http://www.arctic.noaa.gov/reportcard/ArcticReportCard_full_report.pdf

Sea ice and albedo

In the overlapping time period, the trends of sea ice concentration and clear-sky albedo are concurrent

Clear-sky CERES albedo vs sea ice

- Clear-sky
 values show
 clear linear
 trend with
 season
- Linear best-fit is dependent on month...

From linear fits, construct historical albedo record

Feedbacks

- Total arctic: linear least-squares fits to arctic as a whole
- By region: monthly best-fit to six sections, extrapolated, annual mean, total area mean
- Incorporate with local/hemispherical temperature changes: from GISS estimates
- Calculate dS/dT directly, and with dsi as an intermediate variable

$$\frac{dS_{abs}}{dT_s} \approx \left(\frac{dS_{abs}}{dsi}\right) \left(\frac{dsi}{dT_s}\right)$$

Trends and Clear-Sky Feedbacks

$\Delta = 1979 - 2007$	Total Arctic	Regional Method	
Over arctic ocean			
Δ sea ice	-7.1%	-7.1 %	
ΔS_{abs}	$5.6 \mathrm{W/m^2}$	$3.9~\mathrm{W/m^2}$	
$\Delta T_{s,ac}$	2.0 K	2.0 K	
For Northern Hemisphere			
$\Delta T_{s,NH}$	0.58 K	0.58 K	
$\left(\frac{dS_{abs}}{dT_{s,ac}}\right)_{NH}$	$0.17~\mathrm{W/m^2/K}$	$0.13~\mathrm{W/m^2/K}$	
$\left(\frac{dS_{abs}}{dT_{s,NH}}\right)$	$0.42~\mathrm{W/m^2/K}$	$\boxed{0.31 \text{ W/m}^2/\text{K}}$	

Trends and Clear-Sky Feedbacks

$\Delta = 1979 - 2007$	Total Arctic	Regional Method	
Over arctic ocean			
Δ sea ice	-7.1%	-7.1 %	
ΔS_{abs}	$5.6 \mathrm{W/m^2}$	$3.9 \mathrm{W/m^2}$	
$\Delta T_{s,ac}$	2.0 K	2.0 K	
For Northern Hemisphere			
$\Delta T_{s,NH}$	0.58 K	0.58 K	
$\left(\frac{dS_{abs}}{dT_{s,ac}}\right)_{NH}$	$0.17~\mathrm{W/m^2/K}$	$0.13~\mathrm{W/m^2/K}$	
$\left(\frac{dS_{abs}}{dT_{s,NH}}\right)$	$0.42~\mathrm{W/m^2/K}$	$\boxed{0.31 \text{ W/m}^2/\text{K}}$	

IPCC: 1.25-2W/m²/K (global, all feedbacks)

Flanner et al 2011: 0.62W/m²/K (NH cryosphere)

Summary

- Radiative effects of sea ice retreat show a strong spatial and temporal dependence, but a generally linear relationship for each
- Hemispherical clear-sky ice albedo feedback is ~0.3 W/m²/K
- Sea ice retreat shows no signs of slowing, so it is imperative to quantify its effects to the best degree possible

